1. example
#growth “g”
v1<-c(1,2,3)
v2<-v1+c(0.1,0.1,-0.1)
v3<-v1+c(0.1,-0.1,0.1)
v4<-v1+c(-0.1,0.1,0.1)
# decay “d”
v5<-c(3,2,1)
v6<-v5+c(0.1,0.1,-0.1)
v7<-v5+c(0.1,-0.1,0.1)
v8<-v5+c(-0.1,0.1,0.1)
train<-rbind(v1,v2,v3,v4,v5,v6,v7,v8)
cl<-c("g","g","g","g","d","d","d","d")
o1<-v1+c(0.05,0.05,0.1) # g
o2<-v1+c(-0.05,-0.1,0.1) # g
o3<-v1+c(0.05,-0.05,-0.1) # g
o4<-v1+c(-0.1,-0.1,0.1) # g
o5<-v5+c(0.2,0.1,-0.2) # d
o6<-v5+c(0.1,0.1,-0.3) # d
test<-rbind(o1,o2,o3,o4,o5,o6)
k1<-knn(train,test,cl,k=4,prob=TRUE)
attributes(.Last.value)
2. Example
library(class)
train <- rbind(iris3[1:25,,1], iris3[1:25,,2], iris3[1:25,,3])
test <- rbind(iris3[26:50,,1], iris3[26:50,,2], iris3[26:50,,3])
cl <- factor(c(rep("s",25), rep("c",25), rep("v",25)))
keep <- condense(train, cl)
attributes(.Last.value)